On Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions

نویسندگان

  • N. Movahedian Department of Mathematics, University of Isfahan, Isfahan, Iran
  • S. Ahmadi Department of Mathematics, University of Isfahan, Isfahan, Iran
چکیده مقاله:

Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constraint qualifications. It is proved that nonsmooth complementary approximate Karush-Kuhn-Tucker conditions are stronger than nonsmooth approximate gradient projection conditions. Sufficiency for differentiable generalized convex programming is established.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization

Sequential optimality conditions for constrained optimization are necessarily satisfied by local minimizers, independently of the fulfillment of constraint qualifications. These conditions support the employment of different stopping criteria for practical optimization algorithms. On the other hand, when an appropriate strict constraint qualification associated with some sequential optimality c...

متن کامل

Geometry of optimality conditions and constraint qualifications: The convex case

The cones of directions of constancy are used to derive: new as well as known optimality conditions; weakest constraint qualifications; and regularization techniques, for the convex programming problem. In addition, the "badly behaved set" of constraints, i.e. the set of constraints which causes problems in the Kuhn-Tucker theory, is isolated and a computational procedure for checking whether a...

متن کامل

Constraint qualifications for optimality conditions and total Lagrange dualities in convex infinite programming

For an inequality system defined by an infinite family of proper convex functions (not necessarily lower semicontinuous), we introduce some new notions of constraint qualifications. Under the new constraint qualifications, we provide necessary and/or sufficient conditions for the KKT rules to hold. Similarly, we provide characterizations for constrained minimization problems to have total Lagra...

متن کامل

Constraint Qualifications for Nonlinear Programming

This paper deals with optimality conditions to solve nonlinear programming problems. The classical Karush-Kuhn-Tucker (KKT) optimality conditions are demonstrated through a cone approach, using the well known Farkas’ Lemma. These conditions are valid at a minimizer of a nonlinear programming problem if a constraint qualification is satisfied. First we prove the KKT theorem supposing the equalit...

متن کامل

The bilevel programming problem: reformulations, constraint qualifications and optimality conditions

We consider the bilevel programming problem and its optimal value and KKT one level reformulations. The two reformulations are studied in a unified manner and compared in terms of optimal solutions, constraint qualifications and optimality conditions. We also show that any bilevel programming problem where the lower level problem is linear with respect to the lower level variable, is partially ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 5  شماره None

صفحات  15- 28

تاریخ انتشار 2014-05

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023